
Prongs to be
obsolesced
Eric Church, 23-May-2012

Wednesday, May 23, 2012

Prongs: a history

• Inheritance seemed sensible

• In particular, since Tracks and Showers
shared some of the same properties: they
are comprised of hits, they have a
direction, energy,

• Idea was Track::Prong, Shower::Prong

Wednesday, May 23, 2012

Desires

• One’s module could read up the output of the
module that came before, and without knowing
precisely what data it is working with, it could still
manipulate that data and produce output.

• e.g., EventDisplay does this in places.

• T962/MINOS.h describes a class that may contain
data or include extra MC members. Would like to
be able to read either w.o. re-building whole T962.

• These work because there’s no wish to output
that data back onto the event or to pull more data
via Associations.

Wednesday, May 23, 2012

Issues

• This is nicely general:

• These are not:

art::View < recob::Prong > prongListHandle;
evt.getView(fProngModuleLabel,prongListHandle);

// Iterating over Prongs. But not Tracks!
art::PtrVector<recob::Prong> prongIn;
 prongListHandle.fill(prongIn);
 art::PtrVector<recob::Prong>::const_iterator

 pprong = prongIn.begin();

 // Using Assns to get the clusters for the
spacepoints.
clusters = util::FindManyP<recob::Cluster>(prongIn,

evt, fProngModuleLabel, cntp);

Wednesday, May 23, 2012

Not just that

• It’s clear with all the Kalman and Bezier
work that Tracks may need to carry state
vectors and cov matrices and Bezier-ness.
Showers do not. Methods to manipulate
these things are not generalizable to
Showers.

• etcetera.

Wednesday, May 23, 2012

Bottom Line

• It is troublesome to have persistent data classes -- meaning RecoBase
objects that we write to the event -- be “polymorphic.” Which is to say that
there may be good reasons to use such classes in analyze() modules. Not
produce() modules.

• Chris Green confirms this is not supported in ART, for good reasons to do
with CMSSW having wrestled with it for overly long and clunky solutions it
required.

• LArSoft Statement: As a matter of practice, a produce() module should know
what data it's sucking up. It's not enough to specify reading objects that
enjoy some derivation of one to the other.

• Prongs will disappear in dev and going forward. Use Tracks or Showers.

Wednesday, May 23, 2012

